Blue Up-Conversion Emission from a PbF₂/GeO₂/WO₃ Glass Doped with Tm³⁺ or Tm³⁺/Tb³⁺ lons¹

W. Xu,* G. Chen,*,2 and J. R. Peterson*,†,3

*Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600; and †Transuranium Research Laboratory (Chemical and Analytical Sciences Division), Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6375

Received May 12, 1994; in revised form July 7, 1994; accepted July 13, 1994

The blue up-conversion emission properties from Tm^{3+} ions doped into a $PbF_2/GeO_2/WO_3$ heavy-metal fluoride glass upon 15,456 cm $^{-1}$ laser line excitation have been studied. In some cases both Tm^{3+} and Tb^{3+} ions were codoped into the same glass sample. Two blue emission bands, centered at 22,173 cm $^{-1}$ for the $^1D_2 \rightarrow ^3H_4$ Tm^{3+} transition and at 20,833 cm $^{-1}$ for the $^1G_4 \rightarrow ^3H_6$ Tm^{3+} transition, have been observed. The up-conversion emission follows a two-photon absorption process for both bands. Compared to Tm^{3+} ion doping alone, codoping with Tb^{3+} ions increases the 22,173 cm $^{-1}$ emission and decreases the 20,833 cm $^{-1}$ emission. These results are due to the energy transfer between Tm^{3+} and Tb^{3+} ions. A simple rate-equation model has been used to describe this energy transfer process. © 1995 Academic Press, Inc.

INTRODUCTION

The study of luminescence and up-conversion processes in heavy-metal fluoride glasses doped with lanthanide ions has been attracting great interest (1-8). This interest arises from the need for higher densities in optical data storage and for infrared laser windows, fiber optic materials, and laser host materials. Furthermore, heavy-metal fluoride glasses have become available with up-conversion efficiencies comparable to those in fluoride crystals, which are the most efficient up-conversion materials known (9, 10). Such glasses allow high concentrations of trivalent lanthanide ions to be introduced into them.

Trivalent thulium ion is one of the possible candidates

for obtaining blue up-conversion emission when introduced into a Yb3+-doped glass and excited by infrared light (10,204 cm⁻¹) (11, 12). This up-conversion process depends on a three-photon absorption for the blue Tm³⁺ emission band (${}^{1}G_{4} \rightarrow {}^{3}H_{6}$ transition, 20,833 cm⁻¹), i.e., energy transfer from the ${}^2F_{5/2}$ level of Yb³⁺ to the 3H_4 (via the 3H_5 level), 3F_4 (via the 3F_2 level), and 1G_4 levels of Tm³⁺ in three steps. Up-conversion of red light into blue light in Tm³⁺-doped glass has also been reported (13–15). This work indicated that because the blue emission might result from a two-photon absorption process, the efficiency of the up-conversion would be higher. One of us has reported that the enhancement of blue emission from Tm³⁺ ions (${}^{1}G_{4} \rightarrow {}^{3}H_{6}$ transition) is due to the back energy transfer from Yb3+ ions under 14,706 cm-1 (680 nm) light excitation in fluorophosphate glass and glass ceramic (16, 17),

Blue laser action in Tm^{3+} ions is, in principle, easy to obtain because the 22,173 cm⁻¹ emission (${}^{1}D_{2} \rightarrow {}^{3}H_{4}$ transition) involves a transition to an excited state (${}^{3}H_{4}$ level) of the Tm^{3+} ion which is not occupied at room temperature; therefore, population inversion between the ${}^{1}D_{2}$ and ${}^{3}H_{4}$ levels should be possible. However, the lifetime (9 msec) of the ${}^{3}H_{4}$ level is much longer than that (40 μ sec) of the ${}^{1}D_{2}$ level, which makes operation of a 22,173 cm⁻¹ up-conversion laser only possible in a pulse mode unless the lifetime of the ${}^{3}H_{4}$ level is considerably shortened (12). Recently a report appeared on the energy transfer between Tm^{3+} and Eu^{3+} ions in a fluorozirconate fiber codoped with these ions in order to shorten the lifetime of the ${}^{3}H_{4}$ Tm^{3+} level (18).

Because the 3H_4 level of a ${\rm Tm}^{3+}$ ion is nearly resonant with the 7F_0 level of a ${\rm Tb}^{3+}$ ion, it should be possible to quench the lifetime of the 3H_4 ${\rm Tm}^{3+}$ level by means of an energy transfer between these two ions. In this work we report our experimental results at room temperature upon red (15,456 cm⁻¹) excitation into the 3F_2 level of ${\rm Tm}^{3+}$ ions doped into a ${\rm PbF}_2/{\rm GeO}_2/{\rm WO}_3$ glass and into the same glass codoped with ${\rm Tm}^{3+}$ and ${\rm Tb}^{3+}$ ions. The properties of the blue up-conversion emission from the ${\rm Tm}^{3+}$ ion

¹ Research sponsored by the Division of Chemical Sciences, Office of Basic Energy Sciences, U.S. Department of Energy under Grant DE-FG05-88ER13865 to the University of Tennessee, Knoxville and Contract DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc. The U.S. Government's right to retain a nonexclusive royalty-free license in and to the copyright covering this paper, for governmental purposes, is acknowledged.

² Present address: Department of Materials Science, Jilin University, Changchun, People's Republic of China.

³ To whom correspondence should be addressed.

and the energy transfer between Tb³⁺ and Tm³⁺ ions have been studied as a function of the concentration of Tb³⁺ ions in the glass. The up-conversion processes and energy transfer mechanism are elucidated.

EXPERIMENTAL DETAILS

The various glass samples were prepared by mixing together glass-forming oxides GeO₂ and WO₃ with lead(II) fluoride and lanthanide fluorides (99.995%). The mixture was heated and melted inside a muffle furnace at 950°C for 45 min in air. The sample was then obtained by quickly pouring the melt onto a metal sheet. The sample compositions (mole%) used in this work were

$$69.8 \, \text{PbF}_2 + 20 \, \text{GeO}_2 + 10 \, \text{WO}_3 + 0.2 \, \text{TmF}_3$$

$$69.8 \, \text{PbF}_2 + (20 - x/2) \, \text{GeO}_2 + (10 - x/2) \, \text{WO}_3$$

$$+ x \, \text{TbF}_3 + 0.2 \, \text{TmF}_3,$$

where x = 0.5, 0.8, 1.2,and 1.5.

Optical absorption spectra were recorded by using a Cary 17 spectrophotometer that operates from 320 to 2100 nm. The 15,456 cm⁻¹ (647.8 nm) line from a krypton laser (Spectra Physics Model 164) was used as the excitation source. The luminescence spectra were recorded with a Ramanor Model HG.2S spectrophotometer (Jobin-Yvon Instruments SA), having a resolution of 0.5 cm⁻¹ at 19,436 cm⁻¹. The collected light was detected by a photon counting system, which employed a cooled photomultiplier tube (Hamamatsu 636) and a multichannel analyzer (Nicolet 1170) interfaced with an AT personal computer using "Spectra Calc" software (Galactic Industries Corp.).

The intensity of the exciting light was monitored with a Coherent Model 240 power meter.

RESULTS

The absorption spectrum at room temperature of Tm^{3+} ions in a glass sample doped with 0.2 mole% Tm^{3+} was recorded in the wavelength range of 320–2100 nm. This portion of the spectrum exhibited seven absorption bands centered at 1700, 1210, 775, 680, 656, 465, and 356 nm corresponding to the absorption transitions from the 3H_6 ground state to the 3H_4 , 3H_5 , 3F_4 , 3F_3 , 3F_2 , 1G_4 , and 1D_2 excited states of the Tm^{3+} ion (17), respectively. From this spectrum we determined the energies of the different states of the Tm^{3+} ion in the host glass.

Up-conversion emission spectra from the glass host doped with 0.2 mole% TmF₃ and codoped with 0.2 mole% TmF₃ and with 0.5 and 1.5 mole% TbF₃ under 15,456 cm⁻¹ light excitation in the range 20,132–23,000 cm⁻¹ are shown in Fig. 1. Two main emission bands centered at 22,173 cm⁻¹ (450 nm) and 20,833 cm⁻¹ (480 nm) are ob-

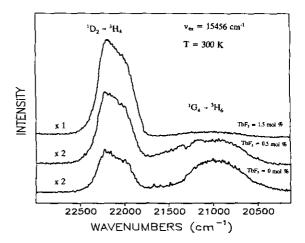


FIG. 1. Up-conversion emission spectrum at room temperature from Tm^{3+} ions in a glass doped with 0.2 mole% TmF_3 only and codoped with 0.2 mole% TmF_3 and 0.5 or 1.5 mole% TbF_3 , under 15,456 cm⁻¹ excitation.

served. According to the energy-level diagram of the Tm^{3+} ion, these emission bands are attributed to the $^1D_2 \rightarrow {}^3H_4$ and $^1G_4 \rightarrow {}^3H_6$ transitions, respectively. For the codoped samples, the spectral shape and position of the emission bands are consistent in all cases, but the intensity of the emission centered at 20,833 cm⁻¹ decreases with increasing concentration of TbF_3 , while that of the 22,173 cm⁻¹ band increases with increasing concentration of TbF_3 . It is clear that these significant changes in the intensity of the Tm^{3+} ion emission are caused by interaction between the Tm^{3+} and Tb^{3+} ions.

The intensities of the two blue up-conversion emission bands from the Tm³⁺ ion were measured as a function of the TbF₃ concentration under red excitation. The results are plotted in Fig. 2. The intensity of the 22,173 cm⁻¹

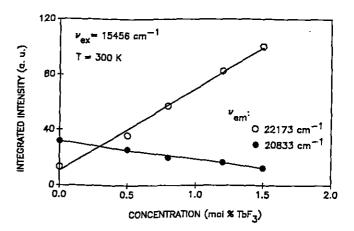


FIG. 2. Dependence of the two blue up-conversion emission intensities from Tm³⁺ ions in a glass on the dopant TbF₃ concentration under identical red light excitation.

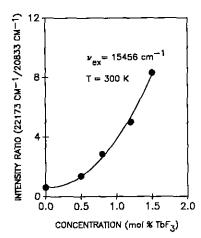


FIG. 3. Ratio of the intensities of the Tm^{3+} ion ${}^{1}D_{2} \rightarrow {}^{3}H_{4}$ emission (22,173 cm⁻¹) to the ${}^{1}G_{4} \rightarrow {}^{3}H_{6}$ emission (20,833 cm⁻¹) as a function of the TbF₃ concentration under constant 15,456 cm⁻¹ excitation.

emission increases linearly with increasing TbF_3 concentration, while the 20,833 cm⁻¹ emission intensity decreases at a slower linear rate over the same TbF_3 range. When the concentration of TbF_3 changes from 0 to 1.5 mole%, the 22,173 cm⁻¹ emission increases about 5 times while the 20,833 cm⁻¹ emission decreases about 2.5 times. The ratio of the intensity of the 22,173 cm⁻¹ emission to that of the 20,833 cm⁻¹ emission versus TbF_3 concentration is shown in Fig. 3, with a 12-fold increase over the 0–1.5 mole% TbF_3 concentration range.

The dependence of the intensities of the two blue upconversion emission bands from the Tm³⁺ ion on the 15,456 cm⁻¹ excitation light intensity for the singly doped sample is reported in Fig. 4. The experimental data have been fit to straight lines, whose slopes are about 2. Similar results were obtained for the same two blue emission bands exhibited by the codoped samples.

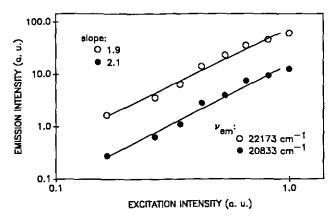


FIG. 4. Two blue up-conversion emission intensities from Tm^{3+} ions in a glass doped with 0.2 mole% TmF_3 , as a function of red light excitation intensity.

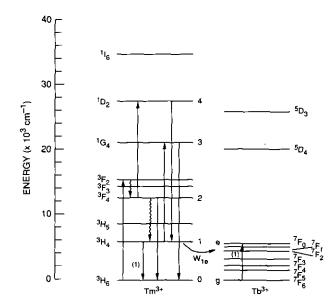


FIG. 5. Schematic energy-level diagrams of Tm³⁺ and Tb³⁺ ions with electronic transitions indicated for excitation and up-conversion processes.

DISCUSSION

Two blue emission bands peaking at 22,173 and 20,833 cm⁻¹ are observed under 15,456 cm⁻¹ light excitation and their intensities depend quadratically on the excitation light intensity for both the singly and the codoped glasses. This means that both up-conversion processes involve two-photon absorptions (4, 19). In the first photon absorption step, Tm³⁺ ions are excited directly into the 3F_2 level. Then they may relax to the 3F_4 and 3H_4 levels. A second 15,456 cm⁻¹ photon absorption by these excited Tm³⁺ ions raises them to the 1D_2 and 1G_4 levels, respectively (see Fig. 5). The observed blue emissions result from the ${}^1D_2 \rightarrow {}^3H_4$ and ${}^1G_4 \rightarrow {}^3H_6$ transitions. This up-conversion mechanism is referred to as an excited state absorption (ESA) process (12, 14).

For the codoped sample under the same excitation conditions, the 20,833 cm⁻¹ emission band decreases and the 22,173 cm⁻¹ emission band increases with an increasing concentration of TbF₃. We suggest that this result is due to energy transfer between the Tm³⁺ and Tb³⁺ ions. For instance, excited Tm³⁺ ions in the ${}^{3}H_{4}$ level may transfer their energy to nearby ground-state Tb³⁺ ions, exciting them to the ${}^{7}F_{0}$ level ((1) in Fig. 5): Tm³⁺(${}^{3}H_{4}$) + Tb³⁺(${}^{7}F_{0}$). This process decreases the population of Tm³⁺(${}^{3}H_{4}$), thereby reducing the probability of ESA from this level to the Tm³⁺(${}^{1}G_{4}$) level, and therefore the 20,833 cm⁻¹ emission from Tm³⁺ ions decreases with increasing Tb³⁺ ion concentration. Energy transfer from Tm³⁺ to Tb³⁺ ions as described above results in depopulation of the ${}^{3}H_{4}$ level in the Tm³⁺ ions,

which further reduces the probability of Tm^{3+} ion excitation to the ${}^{1}G_{4}$ level relative to that to the ${}^{1}D_{2}$ level. Thus, energy transfer plays a vital role in increasing the 22,173 cm⁻¹ and decreasing the 20,833 cm⁻¹ up-conversion emissions from Tm^{3+} ions in the codoped glasses.

This proposed energy transfer process can be described using the following rate-equation model. The Tm^{3+} and Tb^{3+} ion energy levels involved are denoted in Fig. 5 by Arabic numerals to the right of the Tm^{3+} ion energy level diagram and by e (excited state) and g (ground state) to the left of the Tb^{3+} ion energy level diagram. To excite the 3F_2 level of Tm^{3+} ion from its ground state (3H_6) by 15,456 cm⁻¹ light, the appropriate steady-state rate equations are

$$dN_1/dt = \alpha A_{21}N_2 - N_1/\tau_1 - W_{1e}N_gN_1 - \sigma_{13}PN_1 = 0$$
 [1]

$$dN_2/dt = \sigma_{02}PN_0 - N_2/\tau_2 - \sigma_{24}PN_2 = 0$$
 [2]

$$dN_3/dt = \sigma_{13}PN_1 - N_3/\tau_3 = 0$$
 [3]

$$dN_4/dt = \sigma_{24}PN_2 - N_4/\tau_4 = 0$$
 [4]

$$dN_{e}/dt = W_{1e}N_{g}N_{1} - N_{e}/\tau_{e} = 0$$
 [5]

where N_i is the electron population in the Tm^{3+} ion energy level i; N_e and N_g are the respective electron populations in the 7F_0 and 7F_6 levels of the Tb^{3+} ion; W_{1e} represents the energy transfer rate from Tm^{3+} to Tb^{3+} ions; τ_i is the radiative lifetime of Tm^{3+} ions in level i; τ_e is the radiative lifetime of the 7F_0 level of Tb^{3+} ions; P is the excitation intensity; σ_{ij} is the ESA coefficient between Tm^{3+} ion energy levels i and j; N_0 is the electron population of the ground state in Tm^{3+} ions; α is the fraction of radiative decays from the 3F_4 level in Tm^{3+} ions; and A_{21} is the probability of radiative decay from the 3F_4 to 3H_4 levels in the Tm^{3+} ions. These rate equations neglect stimulated emission. The steady-state populations of the 1D_2 and 1G_4 levels in excited Tm^{3+} ions are obtained by solving Eqs. [1]-[5] simultaneously and are given by

$$N_4 \approx \tau_4 N_e [A/(\tau_1)^* + A\sigma_{13}P]$$
 [6]

and

$$N_3 = \sigma_{13} P \tau_3 N_1, \qquad [7]$$

where

$$A = \sigma_{24} P / \alpha A_{21} W_{10} N_0 \tau_0$$
 [8]

and

$$1/(\tau_1)^* = 1/\tau_1 + W_{1e}N_g.$$
 [9]

From Eq. [6] the population of (and therefore the emission

intensity from) the ${}^{1}D_{2}$ level in Tm^{3+} ions is proportional to $1/(\tau_{1})^{*}$. Because of the possible energy transfer from the $Tm^{3+}({}^{3}H_{4})$ to the $Tb^{3+}({}^{7}F_{0})$ levels, the lifetime $((\tau_{1})^{*})$ of the $Tm^{3+}({}^{3}H_{4})$ level is shortened (7, 17). As the Tb^{3+} ion concentration is increased, $(\tau_{1})^{*}$ decreases, and the emission intensity from the ${}^{1}D_{2}$ level of Tm^{3+} ions is increased (according to Eqs. [9] and [6]).

From Eq. [7] the population of the ${}^{1}G_{4}$ level in Tm³⁺ ions is proportional to that of the ${}^{3}H_{4}$ level (N_{1}) , which is reduced by efficient energy transfer to Tb³⁺ ions. Therefore the excited state absorption (ESA) process from the ${}^{3}H_{4}$ level to the ${}^{1}G_{4}$ level becomes less probable, thus decreasing the emission intensity from the ${}^{1}G_{4}$ level. Our experimental observations are in agreement with this result from the rate-equation model.

In summary, two blue up-conversion emission bands centered at 22,173 and 20,833 cm⁻¹ have been observed under red light excitation of PbF₂/GeO₂/WO₃ heavy-metal fluoride glass doped with Tm³⁺ ions. This up-conversion involves a two-photon absorption process for both blue emission bands.

The stronger blue emission, centered at 22,173 cm⁻¹, is obtained in the glass codoped with Tm³⁺ and Tb³⁺ ions. This emission intensity increases with concentration of Tb³⁺ ions, while the other blue emission (20,833 cm⁻¹) decreases. We suggest that this result is due to energy transfer from Tm3+ to Tb3+ ions, which increases the deactivation rate of the ³H₄ level in Tm³⁺ ions. This decrease in the effective ${}^{3}H_{4}$ level lifetime has potential implications toward increasing the efficiency of a 22,173 cm⁻¹ laser (12). Laser action at 22,173 cm⁻¹ seems promising because the ${}^{3}H_{4}$ level in Tm^{3+} ions is not occupied at room temperature, and the energy gap between this level and the ground state $(^{3}H_{6})$ is over 6000 cm⁻¹. Therefore, population inversion between the ${}^{1}D_{2}$ and the ${}^{3}H_{4}$ levels should be possible. On the other hand, an energy transfer process from Tb3+ to Tm3+ ions has also been observed in the present work.

REFERENCES

- 1. M. Poulain, J. Non-Cryst. Solids 56, 1 (1983).
- D. C. Tran, G. H. Sigel, Jr., and B. Bendow, J. Lightwave Technol. LT-2, 566 (1984).
- J. P. Van der Ziel, L. G. Van Uitert, W. H. Grokiewicz, and R. M. Mikuljak, J. Appl. Phys. 60, 4262 (1986).
- D. C. Yeh, W. A. Sibley, M. J. Suscavage, and M. G. Drexhage, J. Appl. Phys. 62, 266 (1987).
- M. G. Drexhage, B. Bendow, and C. T. Moynihan, Laser Focus 10, 61 (1980).
- B. Bendow and M. G. Drexhage, Proc. Photo-Opt. Instrum. Eng. 266, 16 (1981).
- Xu Wu, J. P. Denis, G. Ozen, Ph. Goldner, M. Genotelle, and F. Pelle, Chem. Phys. Lett. 203, 211 (1993).

- 8. Xu Wu, J. P. Denis, G. Ozen, A. Kermaoui, and F. Pelle, Phys. Status Solidi A 141, 445 (1993).
- 9. R. S. Quimby, M. G. Drexhage, and M. J. Suscavage, Electron. Lett. 23, 32 (1987).
- 10. D. C. Yeh, W. A. Sibley, and M. J. Suscavage, J. Appl. Phys. 63, 4644 (1988).
- 11. W. Ryba-Romannowski, S. Golab, and G. Dominiak-Dzik, J. Phys. Chem. Solids 54, 153 (1993).
- 12. E. W. Oomen, J. Lumin. 50, 317 (1992).
- 13. W. Lenth and R. M. Macfarlane, J. Lumin. 45, 346 (1990).

- 14. J. Y. Allain, M. Monerie, and H. Poignant, Electron, Lett. 26.
 - 166 (1990).
- 15. M. Monerie, T. Georges, P. L. Francois, J. Y. Allain, and D. Neveux, Electron. Lett. 26, 320 (1990).
- 16. G. Ozen, J. P. Denis, Ph. Goldner, Xu Wu, M. Genotelle, and F. Pelle, Appl. Phys. Lett. 62, 928 (1993).
- 17. Xu Wu, J. P. Denis, G. Ozen, A. Kermaoui, F. Pelle, and B. Blanzat, J. Appl. Phys. 75(8), 4180 (1994). 18. G. Tohmon, H. Sato, J. Ohya, and T. Fujita, J. Appl. Phys. 73,
- 1528 (1993).
- 19. M. A. Chamarro and R. Cases, J. Lumin. 46, 59 (1990).